## **Babylonian Maths**

## **Division - the Babylonian way**

The Babylonians did not have a method for doing division directly, but they could do division by multiplying a number by its inverse - which is what we do when we want to divide by a fraction. What are the inverses of these numbers?

| 1. | 2             | 5. | $\frac{3}{4}$  |
|----|---------------|----|----------------|
| 2. | 5             | 0. | 4              |
| 3. | $\frac{1}{3}$ |    | 0.3            |
|    | 0.5           | 7. | $1\frac{2}{3}$ |
|    |               | 8. | 2.5            |

Choose three numbers and find their inverses. What do you get when you multiply a number by its inverse?

It is this rule that helped the Babylonians to divide. Suppose they wanted to calculate  $120 \div 30$ . These are the steps they would use:

1. Find the inverse of 30, using the fact that<br/>when you multiply 30 by its inverse, you<br/>get 1. $30 \times ? = 1$ <br/>? would be  $\frac{1}{30}$  in base 10. In base 60, it is

0;2, since 
$$\frac{1}{30} = \frac{2}{60}$$

2. They would then work out 120 x 0;2

 $120 \times \frac{2}{60} = \frac{240}{60} = 4$ 

120 x 0;2 = 0;240 = 4 or

In reality, Babylonian scribes memorised tablets with standard multiplication tables on them and tablets with lists of inverses to make things easier. Not surprising, really!

Complete this table of numbers and inverses.

| Number<br>(base 60) | Number<br>(base 10) | Inverse<br>(base 10) | Inverse<br>(base 60) | Number<br>(base 60) | Number<br>(base 10) | Inverse<br>(base 10) | Inverse<br>(base 60) |
|---------------------|---------------------|----------------------|----------------------|---------------------|---------------------|----------------------|----------------------|
| 0;30                |                     |                      |                      |                     |                     |                      | 0;03                 |
|                     | 30                  |                      |                      |                     |                     | 15                   |                      |
|                     |                     | 1/60                 |                      |                     | 1 1/2               |                      |                      |

Can you find a number in base 10 which would not have an exact inverse in base 60?

## **Babylonian Maths: Division**

http://motivate.maths.org/content/BabylonianMaths

Produced by Motivate, part of the Millennium Mathematics Project at the University of Cambridge, with grant funding from the Higher Education Innovation Fund 4 - Knowledge Transfer Project (c) University of Cambridge 2011. Permission is granted to reproduce this sheet for non-commercial educational uses only; for any other use please contact us: mmp@maths.cam.ac.uk www.mmp.maths.org

