Babylonian Fractions

How do you know when a number is a fraction, or has a fraction part?

The Babylonians did not have a symbol for fractions. It would only be the context which indicated if a number was a fraction or not.

If the two numbers below are fractions less than 1 (so the whole number part is 0), can you work out what they might be?

Remember that the Babylonian system is in base 60!

The first fraction is \[\frac{30}{60} = \frac{1}{2} \]; the second is \[\frac{25}{60} = \frac{5}{12} \].

To save having to draw Babylonian symbols, we will use modern notation, but in base 60.

The two fractions above would then be 0;30, meaning no whole numbers and 30 sixtieths, and 0;25 meaning no whole numbers and 25 sixtieths.

In this worksheet, the first number is always a whole number and the second number is the fraction part.

Convert these base 60 fractions into base 10 fractions:

1. 0;20
2. 0;45
3. 0;10
4. 0;36
5. 0;55
6. 1;24
7. 2;50
8. 8;18

Can you find a base 60 fraction which cannot be exactly converted to a base 10 fraction?

Babylonian Maths: Babylonian Fractions

Convert these base 10 fractions into base 60 fractions:

1. \[\frac{13}{30} \]
2. \[\frac{1}{4} \]
3. \[\frac{2}{3} \]
4. \[\frac{1}{5} \]
5. \[1\frac{3}{10} \]
6. \[2\frac{7}{12} \]

Can you find a base 10 fraction which cannot be converted to a base 60 fraction?